

Energy Efficient Authentication and Authorization for Multi-node Cooperative Connectivity and Reliability

PhD Candidate Vandana Rohokale (vmr@es.aau.dk)

Supervisor

Prof. Ramjee Prasad CTIF, Aalborg, Denmark

Co-supervisors

Assoc. Prof. Horia Cornean AAU, Aalborg, Denmark

Prof. Debasis Saha IIM, Kolkata, India

Center For TeleInFrastruktur • Aalborg University • Niels Jernes Vej 12 • 9220 Aalborg Ø • Denmark • www.ctif.aau.dk

Introduction

- -- Cooperative Wireless Communication (CWC)
- -- Opportunistic Large Arrays

Key Issues

- -- Comparison of OLA algorithms
- -- Authentication and Authorization Issues

Proposed Solutions

-- Cross Layer Cooperation in OLAs

Conclusions and Future Work

Introduction: Cooperative Wireless Communication (CWC)

Opportunistic Large Arrays (OLA)

- Opportunistic Large Array (OLA) is nothing but a cluster of the network nodes which use active scattering mechanism in response to the signal of the source called leader.
- The intermediate nodes opportunistically relay the messages from the leader to the sink.
- Due to signal enhancement in OLA, SNR_{CT} is much higher than SNR_{P2P} .
- OLAs are considerably flexible and scalable in nature.

Basic OLA structure with decoding level

Comparison of OLA algorithms

Parameter/Technique	Delay	Energy saving / life extension	Reliability	Node Density /Scalability	Authentication And Authorization	Center for TeleInFrestru Merit/Demerit
Basic OLA [6] The avalanche of responses to the leader node is like the ola in a sports stadium.	Guaranteed to be constant	5 dB compared to DIB algorithm	With increased SNR values, BER reduces.	Reasonable node density with high scalability	NOT ADRESSED UPTILL NOW	With cooperative Tx, reach-back problem is solved
OLA-T [7] The node participation in each OLA is controlled by the power transmission threshold in Rx.	Constant delay	32% of the transmitted energy as compared to Basic OLA	Highly reliable coop communication	For constant ε values, $\rho=2.65$ nodes/m ² with less scalability as compared to basic OLA		With full flooding approach, energy saving is 50%
OLA-VT [7] OLA with variable threshold, which optimizes thresholds as a function of level.	Can be slightly variable	25% of the transmitted energy as compared to Basic OLA		Slightly less scalable as compared to basic OLA		
A-OLA-T [8] Broadcast protocol alters between the sets of OLAs for each broadcast.	Variable delay	Can offer a 17% life extension as compared to Basic OLA and OLA-T	NOT CONCENTRATED ON RELIABILITY ISSUES	Highly scalable		Almost double power as compared to OLA is required.
OLACRA [8] It exploits the concentric ring shapes of broadcast OLAs to limit flooding on upstream connection.		75% as compared to full flooding approach		Possesses highest scalability		Level Ganging
OLACRA-T [9] The criteria to be met for OLACRA & their received power is less than a specified threshold.				Highly scalable		

center for relemmastruktur • Aarborg University • Niers Jennes vej 12 • 9220 Aarborg Ø • Denmark • www.ctil.aau.uk

Key Issues

Authentication and Authorization issues in the OLAs

Cross Layer Cooperation in OLAs

System Model

Illustration of $f(\mathbf{x}_0, \mathbf{p})$

Proposed OLA structure for Numerical Analysis

Fraction of Energy Saving (FES) as a function of Radius and SNR threshold

Radio node density as a function of Radius and SNR threshold

Nodes participated in cooperative communication as a function of Radius and SNR threshold

- Design Cooperative and Reliable MAC protocol.
- Design efficient methodology for authentication.

• Develop an energy efficient novel approach with security mechanism for trustworthy transmission of the information.

Thank you!!

Center For TeleInFrastruktur • Aalborg University • Niels Jernes Vej 12 • 9220 Aalborg Ø • Denmark • www.ctif.aau.dk