

Light Cognitive Radio Enabled Inter Operator Flexible Spectrum Usage for IMT-Advanced

Sanjay Kumar

Birla Institute of Technology, Mesra, Ranchi Email: skumar@bitmesra.ac.in

Nicola Marchetti and Ramjee Prasad Aalborg University, Denmark

Contents

Introduction Required Enhancements and Solution Components Local Area Deployment Scenario Light Cognitive Radio Concept The proposed Algorithm Performance Evaluation Conclusions

INTRODUCTION

IMT-Advanced

- 4G systems with new capabilities
- Provide access to wide range of telecommunication services
- Target peak data rates 1 Gbps in DL and 500 Mbps in UL
- Support low to high mobility application
- To be operational around the year 2015

Minimum Targets

Cell Spectral Efficiency

□Peak Spectral Efficiency:

Cell edge user throughput:

 DL:
 2.1
 b/s/Hz/cell [4 x 2 Tx-Rx antenna]

 UL:
 1.5
 b/s/Hz/cell [2x4 Tx-Rx antenna]

 DL:
 7/10
 b/s/Hz [4x4 antenna]

 UL:
 2.5 / 5 b/s/Hz [2 x 4 antenna]

 DL:
 0.06
 b/s/Hz/user [4x2 antenna]

 UL:
 0.03
 b/s/Hz/user [2x4 antenna]

3GPP LTE-Advanced aims to meet /exceed IMT-Advanced targets

Required Enhancements and Solution Components

Required Technological Enhancement

Enhanced coverage

Increased user data rate and cell capacity

Increase traffic volume handling

Reduced cost per bit

Lower latency

Backward compatibility with legacy systems. Efficient operation with unequal cell loading Decentralized Nomadic /Local Area Solution

Solution Components

Relay Nodes Support of Larger Bandwidth Cognitive Radio Concepts Flexible Spectrum Usage

Also

ICIC Refinements Advanced Receivers SU-MIMO Further Advanced AMC

Local Area Deployment Scenario (1)

- IMT-A has increased focus on nomadic/ local area deployment
- Deployment : Decentralized and Uncoordinated
- Required
- Autonomous Network Configuration and Operation
- Support of higher bandwidth

HeNB [HBS or Femto Cells]

- High data rate and high quality indoor coverage
- Large scale deployment
- Plug and play device with typical base station functionality
- User deployed : Random and Uncoordinated deployment
- Prior network planning not feasible
- Share Spectrum from Common Pool

Local Area Deployment Scenario (2)

Critical Issues involving HeNB Deployment

- Mutual interference
- Co-existence
- Efficient spectrum utilization
- □ Fairness among operators

Modeling Assumptions (1)

Modeling Assumptions (2)

The Simulation Assumptions

Deployment scenario	:	Indoor Corporate
UE mobility	:	Nomadic
Carrier frequency	:	3.5 GHz
System bandwidth	:	100 MHz
HeNB Total TX power	:	24 dBm
TDD with equal downlink –uplink ratio		
Given Strame duration 10 ms		
•		

Algorithm : Policy Assisted Light Cognitive Radio

Policy

A set of rules agreed among the operators

Cognitive Radio

- An intelligent wireless system
- Aware of its surroundings
- Learn from the environment and
- Adapts statistical variations
- Able to reconfigure using SDR

Light Cognitive Radio

- Makes use of the cognitive radio cycle,
- Does not involve SDR for reconfigurability

Algorithm : Description

HeNB is powered onRandom PRB Allocation

- Interference Threshold based PRB Allocation
- Policy specifies initial, Min. and Max. # PRB allocation
- Increase #PRBs per user in subsequent turns
- Calculate pay off using utility function

 $UF = rac{TP^{lpha}}{B}$

- Compare pay off : current and previous
- Select allocation with highest pay off
- Change when an alternative pay off exceeds the current

Decision and Adaptation

Sensing

(starts)

Learning

Phage

Performance Evaluation (1)

60% Average Cell Load for each operator is achieved at -70 dBm Interference Threshold

Average cell load with two Operators deployment

Performance Evaluation (2)

proposed scheme gives higher mean cell throughput than universal frequency reuse only at 60 % spectral resource usage. Performance is comparable with fixed spectrum allocation scheme.

Mean Cell Throughput with two operators deployment

Performance Evaluation (3)

Mean Cell Throughput with four operators deployment

Conclusions

- A review of the technological advancements required in existing system and potential solution components to meet IMT-Advanced requirements are discussed.
- Critical issues related to Local area indoor deployment are highlighted.
- Policy Assisted LCR for multi operator scenario is suggested as potential solution
- The considered algorithms provides coexistence of Multiple operators in the given area and improves overall throughput performance over fixed Spectrum allocation and universal frequency reuse schemes

Thank You